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Abstract

We introduce an Extended Textual Conditioning space in
text-to-image models, referred to as P+. This space con-
sists of multiple textual conditions, derived from per-layer
prompts, each corresponding to a layer of the denoising
U-net of the diffusion model. We show that the extended
space provides greater disentangling and control over im-
age synthesis. We further introduce Extended Textual In-
version (XTI), where the images are inverted into P+, and
represented by per-layer tokens. We show that XTI is more
expressive and precise, and converges faster than the orig-
inal Textual Inversion (TI) space. The extended inversion
method does not involve any noticeable trade-off between
reconstruction and editability and induces more regular in-
versions. We conduct a series of extensive experiments to
analyze and understand the properties of the new space,
and to showcase the effectiveness of our method for per-
sonalizing text-to-image models. Furthermore, we utilize
the unique properties of this space to achieve previously
unattainable results in object-style mixing using text-to-
image models.

1. Introduction
Neural generative models have advanced the field of im-

age synthesis, allowing us to create incredibly expressive
and diverse images. Yet, recent breakthroughs in text-to-
image models based on large language-image models have
taken this field to new heights and stunned us with their abil-
ity to generate images from textual descriptions, providing
a powerful tool for creative expression, visualization, and
design.

These text-to-image diffusion models use the encoded
text as conditioning. We can refer to the conditioning
space defined by the tokens embedding space of the lan-
guage model as P space. In other words, P is the textual-
conditioning space, where during synthesis, an instance
p ∈ P (after passing through a text encoder) is injected
to all attention layers of a U-net, as illustrated in Figure 1
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Figure 1. P vs. P+. Standard textual conditioning, where a single
text embedding is injected to the network (left), vs. our proposed
extended conditioning, where different embeddings are injected
into different layers of the U-net (right).

(left). In this paper, we introduce the Extended Textual Con-
ditioning space. This space, referred to as P+ space, con-
sists of n textual conditions {p1, p2, ...pn}, where each pi is
injected to the corresponding layer i in the U-net (see Fig-
ure 1 (right)). P+ space is more expressive, disentangled
and thus provides better control on the synthesized image.
As will be analyzed in this paper, different layers have vary-
ing degrees of control over the attributes of the synthesized
image. In particular, the coarse layers primarily affect the
structure of the image, while the fine layers predominantly
influence its appearance.
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Figure 2. Shape-Style Mixing in XTI. The extended textual
space allows mixing concepts learned from two separate extended
textual inversions (XTIs). The inversion of the kitten (right) is in-
jected to the coarse inner layers of the U-net, affecting the shape of
the generated image, and the inversion of the cup (left) is injected
to the outer layers, affecting the style and appearance.
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The introduction of P+ textual conditioning space opens
the door to a particularly exciting advancement in the
domain personalization of text-to-image models [15, 45],
where the model learns to represent a specific concept de-
scribed in a few input images as a dedicated token. This
learned token can then be employed in a text prompt to pro-
duce diverse and novel images related to the concept pro-
vided by the user. This technique of learning tokens is re-
ferred to as Textual Inversion (TI) [15].

In our work, we introduce Extended Textual Inversion
(XTI), where we invert the input images into a set of token
embeddings, one per layer, namely, inversion into P+. Our
findings reveal that the expanded inversion process in P+
is not only faster than TI, but also more expressive and pre-
cise, owing to the increased number of tokens that provide
superior reconstruction capabilities. Remarkably, the im-
proved reconstruction does not compromise editability, as
demonstrated by our results.

Furthermore, we leverage the distinctive characteristics
of P+ to advance the state-of-the-art in object-appearance
mixing through text-to-image generation. Specifically, we
employ the insertion of inverted tokens of diverse subjects
into the different layers to capitalize on the inherent shape-
style disentanglement exhibited by these layers. This ap-
proach enables us to achieve previously unattainable results
as shown in Figure 2.

We conduct extensive experiments and evaluation to
demonstrate the effectiveness of the new space, analyz-
ing its properties and showcasing its power for personal-
izing text-to-image models, object-style mixing, and more.
Project page: https://prompt-plus.github.io

2. Related works
2.1. Extended Spaces in Generative Models

Exploring neural sub-spaces in generative models has
been extensively explored, most notably in StyleGAN [21,
22]. The extended textual conditioning P+ is reminiscent
of StyleGAN’s extended latent space [1, 2], also commonly
referred to as W+. Similar to W+, P+ is significantly
more expressive, where instead of a single code shared by
all layers, there is one per layer. However, while W+ is an
extended latent space, here the extended space relates to the
textual conditions used by the network. It should be noted,
though, that while W+ is expressive, the extended code is
less editable [50]. In contrast, P+ remains practically as ed-
itable as P . In addition, other sub-spaces lay within deeper
and more disentangled layers [56] have been explored and
exploited in various editing and synthesis applications [8].

In the case of text-to-image diffusion models, the de-
noising U-net, which is the core model of most of the text-
to-image diffusion models, is usually conditioned by text
prompts via a set of cross-attention layers [39, 42, 46]. In

many neural architectures, different layers are responsible
for different abstraction levels [7, 22, 53, 59]. It is natural
to anticipate that the diffusion denoising U-Net backbone
operates in a similar manner, with different textual descrip-
tions and attributes proving beneficial at different layers.

2.2. Text-Driven Editing

There has been a significant advancement recently in
generating images based on textual inputs through Text-to-
Image models [11, 39, 42, 46], where most of them exploit
the powerful architecture of diffusion models [18, 42, 47,
48, 49].

In particular, recent works have attempted to adapt text-
guided diffusion models to the fundamental problem of
single-image editing, aiming to exploit their rich and di-
verse semantic knowledge of this generative prior.

In a pioneering attempt, Meng et al. [31] add noise to
the input image and then perform a denoising process from
a predefined step. Yet, they struggle to accurately preserve
the input image details, which were preserved by a user pro-
vided mask in other works [5, 4, 33]. DiffEdit [12] employs
DDIM inversion for image editing, but to prevent any result-
ing distortion, it generates a mask automatically that allows
background preservation.

Text-only editing approaches split into approach that
supports to global editing [14, 25, 27, 37], and local editing
[6, 54]. Prompt-to-prompt [17] introduces an intuitive edit-
ing technique that enables manipulation of local or global
details by injecting internal cross-attention maps. To al-
low prompt-to-prompt to be applied to real images, Null-
Text Inversion [32] is proposed as means to invert real im-
ages into the latent space of the diffusion model. Imagic
[24] and UniTune [52] have demonstrated impressive text-
driven editing capabilities, but require the costly fine-tuning
of the model. The InstructPix2Pix [9], Plug-and-Play [51],
and Parmar et al. [35] allow users to input an instruction
or target prompt and manipulate real images accordingly, to
achieve the desired edits.

2.3. Personalization

Synthesizing particular concepts or subjects which are
not widespread in the training data is a challenging task.
This requires an inversion process that given input images
would enable regenerating the depicted object using a text-
guided diffusion model. Inversion has been studied exten-
sively for GANs [8, 13, 29, 57, 58, 60], ranging from latent-
based optimization [1, 2] and encoders [40, 50] to feature
space encoders [55] and fine-tuning of the model [3, 41, 34].

The notion of personalization of text-to-image models
has been shown to be a powerful technique. Personaliza-
tion of models [26, 45] in general or of text tokens [15]
has quickly been adapted for various applications [23, 28].
In addition to their high computational cost, current meth-
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Figure 3. Per-layer Prompting. We provide different text prompts
(a precursor to P+) to different cross-attention layers in the de-
noising U-net. We see that color ("red", "green") is deter-
mined by the fine outer layers and content ("cube", "lizard")
is determined by the coarse inner layers.

ods face a clear-trade-off between learning tokens that ac-
curately capture concepts vs. avoidance of overfitting. This
can result in learned tokens that are overly tuned to the in-
put images, thus limiting their ability to generalize to new
contexts or generate novel variations of the concept.

Similar to TI, our approach does not require any fine-
tuning or modification of the weights, thus, reduces the risk
of overfitting and degrading the editability capabilites. In
contrast, our inversion process into P+ is both faster and
more precise, thanks to the greater number of tokens that
improve reconstruction capabilities without sacrificing ed-
itability.

3. Extended Conditioning Space
To engage the reader, we begin with a simple experiment

on the publicly available Stable Diffusion model [43]. We
partitioned the cross-attention layers of the denoising U-net
into two subsets: coarse layers with low spatial resolution
and fine layers with high spatial resolution. We then used
two conditioning prompts: "red cube" and "green
lizard", and injected one prompt into one subset of
cross-attention layers, while injecting the second prompt
into the other subset. The resulting generated images are
provided in Figure 3. Notably, at the first run the model gen-
erates a red lizard, by taking the subject from the coarse lay-
ers’ text conditioning, and appearance from the fine layers’
conditioning. Similarly, in the second run it generates the
green cube, once again taking the appearance from the fine
layers and the subject from the coarse layers. This experi-
ment suggests that the conditioning mechanism at different
resolutions processes prompts differently, with different at-
tributes exerting greater influence at different levels. With
this in mind, our work aims to further explore this phenom-

ena and its potential applications.
In the following parts, we introduce the Extended Tex-

tual Conditioning space (P+) and its key properties. We
then detail how this space can be utilized to perform textual
inversion for a given set of images.

3.1. P+ Definition

Let P denote the textual-conditioning space. P refers
to the space of token embeddings that are passed into the
text encoder in a text-to-image diffusion model. To clarify
the definition of this space, we provide a brief overview of
the process that a given text prompt undergoes in the model
before being injected into the denoising network.

Initially, the text tokenizer splits an input sentence into
tokens, with a special token marking the end of the sentence
(EOS). Each token corresponds to a pre-trained embedding
that is retrieved from the embedding lookup table. Sub-
sequently, these embeddings are concatenated and passed
through a pre-trained text encoder, then injected to the cross
attention layers of the U-net model. In our work, we define
P as the set of individual token embeddings that are passed
to the text encoder. The process of injecting a text prompt
into the network for a particular cross-attention layer is il-
lustrated in Figure 4.

We next present the Extended Textual Conditioning
space, denoted by P+, which is defined as follows:

P+ := {p1, p2, ...pn} , (1)

where pi ∈ P represents an individual token embedding
corresponding to the i-th cross-attention layer in the denois-
ing U-net. Figure 1 illustrates the conceptual difference be-
tween the two spaces, P (left) and P+ (right).

“a cat”

a cat EOS

Tokens embeddings
look-up table

Text 
encoder

Cross-
attention

Spatial features

Figure 4. Text-conditioning mechanism of a denoising diffusion
model. The prompt "a cat" is processed with a sentence to-
kenization, by a pretrained textual encoder, and fed into a cross-
attention layer. Each of the three bars on the left represents a token
embedding in P .

With the definition of the new space, our diffu-
sion model, previously conditioned on a single prompt
U(x|t, p), can now synthesize images in the extended space
U(x|t, p1, . . . , pn), where t denotes the denoising timestep.
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As P is a subspace of P+, we naturally inquire about
the advantages of synthesizing in the extended space. In
Section 4, we present an analysis of the properties of the
new space, which showcases a higher degree of control over
various attributes. Specifically, different layers are found to
dominate different attributes, such as style, color, and struc-
ture.

A notable benefit of this space is its potential for en-
hancing textual inversion. We next demonstrate how the
extended space can be utilized to represent subjects with
greater fidelity, while maintaining the capability for editing.

3.2. Extended Textual Inversion (XTI)

Given a set of images I = {I1, . . . , Ik} of a specific
subject, the goal of the Textual Inversion (TI) operation [15]
is to find a representation of the object in the conditioning
space P . We next explain how we extend the TI approach
and perform the inversion into P+. This process is coined
Extended Textual Inversion (XTI).

First, we add n new textual tokens t1, . . . ,tn to the to-
kenizer model, associated with n new token embeddings
lookup-table elements e1, . . . , en. Then, similarly to [15],
we optimize the token embeddings with the objective to pre-
dict the noise of a noisy images from I, while the token
embeddings are injected to the network.

Assuming that the denoising U-net is parameterized by
a set of parameters denoted by θ, and operates within
the extended conditioning space as previously described,
we define the reconstruction objective for the embeddings
e1, . . . , en that correspond to the tokens t1, . . . ,tn as fol-
lows:

LXTI = E
P∼Π, I∼I,
ε∼N (0,1), t

∥ε− εθ(It|t, P (t1, . . . ,tn))∥22

where It is the image I noised with the additive noise ε
according to the noise level t. Once we operate with a
latent diffusion model, we always suppose that I is a la-
tent image representation. The new look-up table embed-
dings e1, . . . , en that correspond to t1, . . . ,tn are opti-
mized w.r.t. LXTI. This optimization is applied indepen-
dently to each cross-attention layer.

4. Experiments and Evaluation
In this section, we conduct an in-depth analysis of the

various properties exhibited by the U-net cross-attention
layers, and investigate how these characteristics are dis-
tributed across the layers. This analysis constitutes a mo-
tivation for the effectiveness of our P+ space. We then
present a comprehensive evaluation of our proposed XTI
approach for the personalization task, encompassing quanti-
tative, qualitative, and user study analysis. For more details
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Figure 5. Object-appearance attention ratio. Mean ratio of at-
tention features of the object token(s) and appearance token(s), per
cross-attention layer.

about the user study setting please refer to the supplemen-
tary material.

In all of our experiments we use the Stable Diffusion 1.4
model [43]. It is built on top of CLIP [38], whose token
embedding is represented by a vector with 768 entries, such
that P ⊆ R768. Stable Diffusion a latent diffusion model
whose denoising U-net operates on an autoencoded image
latent space. The U-net has four spatial resolution levels
- 8x8, 16x16, 32x32, and 64x64. The 16, 32, and 64 res-
olution levels each have two cross-attention layers on the
downward (contracting) path and three cross-attention lay-
ers on the upward (expansive) path. Resolution 8 has only
1 cross-attention layer. Thus there are a total of 16 cross-
attention layers and 16 conditional token embeddings that
comprise our P+ ⊆ R768×16 space.

4.1. P+ Analysis

Cross-Attention Analysis We first analyze how the dis-
tribution of the cross attention varies across layers. We cre-
ate a list of 50 objects and 20 appearance adjectives (10
style descriptors and 10 texture descriptors, see supplemen-
tary material list). From these lists, we create 2000 (=
50×20×2) prompts following the patterns "appearance
object" and "object, appearance", and generate
8 images for each prompt using different seeds. We store
the cross-attention values for each layer for only the object
or appearance token(s), then average over the batch, spa-
tial dimensions, and timesteps to get a ratio of attention on
the object token(s) to attention on the appearance token(s).
Figure 5 reports the corresponding ratios. The coarse layers
(8, 16) attend proportionally more to the object token and
fine layers (32, 64) attend more to the appearance token.
This experiment gives us the intuition that coarse layers are
more responsible for object shape and structure compared
to the fine layers.

Attributes Distribution We further analyze how differ-
ent cross-attention layers impact different image attributes
(shape, color, etc.). To do so, we make use of the CLIP
similarity metric [38] to quantify the contribution of each
layer.
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House
Graffiti

Red

Mix range“Blue car, impressionism” “Red house, graffiti”

Figure 6. Visualization of mixed conditioning of the U-net cross-attention layers. The rows represent two different starting seeds and
the columns represent eight growing subsets of layers, from coarse to fine. We start by conditioning all layers on "Blue car,
impressionism" in the left column. As we move right, we gradually condition more layers on "Red house, graffiti", starting
with the innermost coarse layers and then the outer fine layers. Note that shape changes ("house") take place once we condition the
coarse layers, but appearance ("red") changes only take place after we condition the fine layers.

First, we divide the 16 cross-attention layers into 8 sub-
sets, starting from the the empty set, followed by the middle
coarse layer and growing outwards to include the outer fine
layers, and finally the full set (see Figure 7 for a visual ex-
planation and the supplementary for the detailed list).

Next, we take three lists of object, color and
style words and randomly generate prompts with
the format "color object, style". For exam-
ple, "green bicycle, oil painting" or "red
house, vector art". We then randomly sample 64
pairs of these prompts. For every pair, we condition the
aforementioned subset of layers on one prompt, and condi-
tion the complement set on the other prompt. We then gen-
erate 8 images with fixed seeds for each prompt-pair and
subset.

Next, we measure the similarity of the output image to
each object, color and style attribute with CLIP sim-
ilarity. This measures the relative contribution of either con-
ditioning prompt.

Figure 6 demonstrates this process for a single prompt
pair and two image seeds. We start on the left column
with all layers conditioned on the first prompt "Blue
car, impressionism". As we move from left to
right, we condition more layers from coarse to fine with
the other prompt "Red house, graffiti". Note that
even though we already condition some layers on "Red
house, graffiti" in the middle column, the house
only starts to appear red towards the end when the fine lay-
ers are also conditioned on the same prompt.

The results averaged over images and prompt pairs are
shown in Figure 7. We see that at either extreme, the CLIP
similarities are dominated by either prompt (represented as
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Figure 7. Relative CLIP similarities for object, color and
style attributes, by subset of U-net layers. Orange represents
the similarity to the first prompt, and blue represents similarity to
the second. As we move from left to right, we gradually grow the
subset of layers conditioned with the second prompt from coarse
to fine.

orange or blue). However, like the example in Figure 6, dif-
ferent prompt attributes demonstrate different behaviors in
between. We can see that it is sufficient to condition only
the coarse layers for object, while color requires that
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we condition the full set of layers. style lies somewhere
in-between. Thus, coarse layers determine the object
shape and structure of the image, and the fine layers deter-
mine the color appearance of the image. style is a more
ambiguous descriptor that involves both shape and texture
appearance, so every layer has some contribution towards
it.

4.2. XTI Evaluation

Next, we evaluate our proposed XTI and compare our
results to the original Textual Inversion (TI) [15]. We use
a combined dataset of the TI dataset of 9 concepts, and the
dataset from [26] with 6 concepts. For both datasets, each
concept has 4-6 original images.

We focus on TI as a baseline because it is a model-
preserving inversion approach that does not fine tune the
model weights. These fine-tuning approaches like Dream-
Booth [45] and Custom Diffusion [26] explicitly embed the
concept within the model’s output domain and thus have
excellent reconstruction. However, they have several disad-
vantages. Firstly, they risk destroying the model’s existing
prior (catastrophic forgetting). Secondly, they have several
orders of magnitude more parameters. Recent work with
Low-Rank Adaptation (LoRA) [20] reduces the number of
fine-tuned parameters to a fraction, but this is still about
∼ 100x more than XTI. Lastly, they are difficult to scale to
multiple concepts since the fine-tuned parameters for each
concept have to be merged.

4.2.1 Setup

We followed the batch size of 8 and performed 5000 op-
timization steps for Textual Inversion, consistent with the
original paper. However, we opted to use a reduced learning
rate of 0.005 without scaling for optimization, as opposed
to the Latent Diffusion Model from [43] used in the original
paper. In our experiments, Stable Diffusion with this learn-
ing rate worked better. For our proposed XTI, we used the
same hyperparameters as for Textual Inversion, except for
the number of optimization steps which we reduced to 500,
resulting in significantly faster convergence. Both Tex-
tual Inversion and XTI shared all other hyperparameters,
including the placeholder training prompts. On 2×Nvidia
A100 GPUs, the whole optimization takes ∼15 minutes for
XTI compared to ∼80 minutes for TI.

4.2.2 Quantitative Evaluation

Following [15], to evaluate the editability quality of the
inversions, we use the average cosine similarity between
CLIP embeddings of the generated images and the prompts
used to generate the images (Text Similarity). To measure
the distortion of the generated images from the original con-
cept (Subject Similarity), we use the average pairwise co-
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Figure 8. Comparison of Textual Similarity and Subject Sim-
ilariy. Textual Inversion (TI) [15], Extended Textual Inversion
(XTI), DreamBooth [45]. We also evaluate the metrics for both
multi-image and single-image inversion setups. For the latter, a
subject is represented by a single image. The “Reference” label
corresponds to images containing the subject images themselves,
while the ”Textual description” label used the given text descrip-
tion but replaced the explicit subject’s description (e.g. ”a colorful
teapot”). The standard error is visualized in the bars.

sine similarity between ViT-S/16 DINO [10] embeddings
of the generated images and the original dataset images.
Compared to CLIP which is trained with supervised class
labels, [45] argued that DINO embeddings better capture
differences between images of the same class due to its self-
supervised training. All the methods reported in Figure 8
are evaluated over 15 subjects from [15] and [26], each gen-
erated with 14 different prompts templates that place the
concept in novel context (e.g. "A photograph of {} in the
jungles”, see Section 8.2.3 in the supplementary for details).
For each test concept and prompt we generated 32 images,
making a total of 15× 14× 32 = 6720 images. We fix the
generation seed across different methods.

In Figure 8 we report the evaluation of the proposed Ex-
tended Textual Inversion (XTI). Among Textual Inversion
[15], as for comparison we also include DreamBooth [45]
which is not a model-preserving method. Notably, XTI out-
performs TI at both subject and text similarity despite using
10x fewer training steps. We also report TI using 500 opti-
mization steps, which is the number of steps we use for XTI.
This improves the Text Similarity because fewer number of
optimization steps prevents the optimized token embedding
from being out of distribution. However, it degrades recon-
struction as measured by Subject Similarity.

We also report the inversion in a data-hungry setup,
where the subject is represented with only a single image.
Notably, even in this extreme setting the proposed XTI per-
forms better than multi-image TI in terms of subject simi-
larity (see Section 4.3 for details).
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Textual Inversion Extended Textual Inversion

A photo of <barn> in the jungles

Marc Chagal painting of <clock>

A photograph of <teapot>

<teddy bear> in Times Square

Real

<cat> wearing sunglasses

Figure 9. Textual Inversion (TI) vs. Extended Textual Inversion (XTI). Column 1: Original concepts. Column 2: TI results. Column 3:
XTI results. It can be seen that XTI exhibits superior subject and prompt fidelity, as corroborated by the results of our user study.

4.2.3 Human Evaluation

Figure 9 shows a visual comparison of our XTI approach
with the original TI. Our method demonstrates less distor-
tion to the original concept and to the target prompt.

To assess the efficacy of our proposed method from
a human perspective, we conducted a user study. The
study, summarized in Table 1, asked participants to evaluate
both Textual Inversion (TI) and Extended Textual Inversion
(XTI) based on their fidelity to the original subject and the
given prompt. The results show a clear preference for XTI
for both subject and text fidelity.

Method Subject Fidelity Text Fidelity
Textual Inversion 24% 27%
XTI (Ours) 76% 73%

Table 1. User study preferences for subject and text fidelity for TI
and XTI. See supplementary material for more details.

4.3. Single Image Inversion

The Extended Textual Inversion also appears to be very
effective in a data-hungry setup, when a target subject is
represented with a single image. As for single image train-
ing for all the runs we reduce learning rate to 0.001 to better
prevent overfitting. Figure 10 provides visual comparison of
TI and XTI inversions in the this single image setting. We
omit single-image DreamBooth results from Figure 10 and
8 due to its comparatively poor performance, namely Text
Similarity of 0.25 and Subject Similarity of 0.40. In partic-
ular, we found DreamBooth in this single-image setting to
be prone to overfitting and difficult to optimize.

4.4. Embedding Density

As the textual embeddings inverted with XTI have better
editability properties compared to the original TI, this sug-
gests that these tokens are better aligned with the original
tokenizer look-up table embedding, which represents the
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Textual Inversion (single image) Extended Textual Inversion (single image)

<barn> in the deep night

Real

<cat> wearing sunglasses

Photo of <clock> on a wooden table

Figure 10. Single Image Textual Inversion (TI) vs Single Image Extended Textual Inversion (XTI). Column 1: Original concepts.
Column 2: TI results. Column 3: XTI results. It can be seen that XTI exhibits superior subject and prompt fidelity and produce pleasable
results even when trained on a single image.

manifold of natural language embedding. To quantify this
intuition, we evaluate the density of the newly-optimized to-
kens with respect to the original “natural” tokens look-up ta-
ble embeddings. We perform kernel-based density estima-
tion (KDE) in the look-up table tokens embeddings space
independently for each dimension. Let us define E to be the
set of all original tokens look-up table embeddings, before
adding the extra optimized token(s). Assuming that E is
sampled from some continuous distribution, one can define
the approximation of its density function at a point x as:

log pE(x) ≈
1

|E|
∑
e∈E

K(x− e), (2)

where K is the Gaussian kernel density function [36, 44].
As for the embeddings optimized with original TI, this
quantity always appears to be significantly smaller com-
pared to the densities at the original embeddings E . Figure
11 illustrates the original tokens density distribution, and
the textual inversion tokens densities. This demonstrates
that the proposed approach provides embeddings that are
closer to the original distribution, enabling a more natural
reconstruction and better editability.

5. Style Mixing Application
As we showed earlier, different layers of the denoising

U-net are responsible for different aspects of a synthesized
image. This allows us to combine the shape of one inverted
concept with the appearance of another inverted concept.
We call this Style Mixing.

-770 -760 -750 -740 -730 -720 -710 -700

Look-up table embeddings log-density

0.00

0.05

0.10

0.15

0.20

0.25
Textual Inversion

XTI (ours)

Original tokenizer embeddings

Figure 11. Estimated log-density of the original look-up table to-
ken embeddings (gray), embeddings optimized with textual inver-
sion (blue), and embeddings optimized with XTI (orange). Our
method demonstrates a more regular representation which is closer
to the manifold of natural words.

Let us consider two independent XTI inversions of two
different concepts. We can combine the inversions by
passing tokens from different subject to different layers,
as illustrated in Figure 2. This mixed conditioning pro-
duces an image with a coarse geometry from the first
concept, and appearance from the second concept. For-
mally, we are given two extended prompts: {pn, . . . ,pn},
and {q1, . . . ,qn}. We form a new extended prompt
{p1, . . . ,pk,qk+1, . . . ,qK ,pK+1, . . . ,qn} with the sepa-
rators 1 ≤ k < K ≤ n.

Our observations indicate that the optimization of XTI
with an additional density regularization loss term indicated
in 2 enhances its ability to mix objects and styles, without
compromising the quality of the inversion output. More de-
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tails are provided as supplementary material.
Figure 12 demonstrates combining the "skull mug"

and "cat statue" concepts from [15]. Different rows
of the plot correspond to different blending ranges k,K.
From top to bottom, we gradually expand it from the mid-
dle coarse layer to all the cross-attention layers. This range
(k,K) gives the control over the amount of details we want
to bring from one inversion to another. By varying k and
K, we can adjust the contributions of the second subject
appearance to the first.

Figure 13 shows a variety of examples generated with
this method. Both shape and appearance are inherited re-
markably well. More illustrations are provided in supple-
mentary.

Figure 14 provides a qualitative comparison between
our XTI-based style mixing and baselines of TI [15] and
DreamBooth [45]. The results demonstrate that our ap-
proach outperforms the baselines significantly, both in
terms of preserving the sources’ fidelity and disentangling
the attributes.

Appearance transfer with XTI blending

B
le

nd
in

g 
ra

ng
e

Figure 12. Style Mixing in P+. Rows are generated by varying
the degree of mixing by adjusting the proportion of layers condi-
tioned on either of the two P+ inversions.

6. Conclusions, Limitations, and Future work
We have presented, P+, an extended conditional space,

which provides increased expressivity and control. We have
analyzed this space and showed that the denoising U-net

Appearance

G
eo
m
et
ry

Figure 13. More Style Mixing examples. Top row: Shape source
concepts. Left column: Appearance source concepts.

demonstrates disentanglement, where different layers ex-
hibit different sensitivity to shape or appearance attributes

The competence of P+ is demonstrated in the Textual
Inversion problem. Our Extended Textual Inversion (XTI)
is shown to be more accurate, more expressive, more con-
trollable, and significantly faster. Yet surprisingly, we have
not observed any reduction in editability.

The performance of XTI, although impressive, is not
flawless. Firstly, it does not perfectly reconstruct the con-
cept in the image, and in that respect, it is still inferior to
the reconstruction that can be achieved by fine-tuning the
model. Secondly, although XTI is significantly faster than
TI, it is a rather slow process. Lastly, the disentanglement
among the layers of U-net is not perfect, limiting the degree
of control that can be achieved through prompt mixing.

An interesting research avenue is to develop encoders to
invert one or a few images into P+, possibly in the spirit
of [16], or to study the impact of applying fine-tuning in
conjunction of operating in P+.
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Appearance

Textual Inversion DreamBoothGeometry Extended Textual Inversion

Appearance

Geometry Textual Inversion DreamBooth Extended Textual Inversion

Figure 14. Style Mixing comparison. We compare against Textual Inversion [15] and Dreambooth [45] baselines. For TI we inde-
pendently invert target subject and target appearance, and generate the images with the sentence ”<object> that looks like
<appearance>”. Prompt variations did not make any remarkable improvements. The style source concept was inverted with style
prompts (see [15] for details). DreamBooth was trained with a pair of subjects. Our proposed Extended Textual Inversion clearly outper-
forms both baselines.
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Alexei A Efros. Generative visual manipulation on the nat-
ural image manifold. In European conference on computer
vision, pages 597–613. Springer, 2016. 2

12



Supplementary
7.1. Regularization

When applying style mixing, we discovered that opti-
mizing XTI with an additional density regularization loss
term (Equation 2) improves the mixing capability while
maintaining the overall quality of the inversion. To achieve
this, we use an extra loss term −λ ·

∑l
i=1 log pE(ei), where

λ = 0.002 serves as a small regularization scale. This loss
term encourages the newly added look-up table embedding
to be even more regular, causing the optimized token distri-
bution from Figure 11 to shift closer to the original token
distribution. We contend that this is particularly advanta-
geous for the mixture application because in this scenario,
generation is conditioned by two different XTI tokens, mak-
ing it crucial to have them interact naturally, i.e., with the
two tokens lying closer to the natural language manifold.

However, applying this regularization term to the orig-
inal TI for subject recontextualization leads to a degrada-
tion in subject similarity of the inversion. Even with a
small λ scaling factor, this regularization enforces signifi-
cant simplification in the inversion process, leaving the re-
constructed token with limited freedom and expressivity.
Meanwhile, although the drop in quality for XTI is minimal
when the regularization is added, we do not use it by default
for the recontextualization task for XTI because it would in-
crease its complexity (another hyperparameter) and conver-
gence rate.

8. Further Results and Details
Figures 15 and 16 provide more examples of geometry

and style mixing. In Figure 15 objects prompts are passed
to a wider range of layers compared to Figure 16, enforcing
higher source geometry alignment.

Figure 17 provides more uncurated examples generated
with Textual Inversion and Extended Textual Inversion.

As for inference we use the PNDM scheduler [30] with
50 denoising steps and a classifier-free guidance [19] scale
of 7.5.

We implemented DreamBooth with a learning rate of 5e-
6, a batch size of 4, and conducted 400 finetuning steps
per-subject, using Stable Diffusion. Our optimization fo-
cused solely on the U-net weights and did not involve prior
preservation.

8.1. Coarse/Fine Layers Split

We provide the details of the layer subsets we used in
the shape-style mixing experiments in Figures 5 and 7. We
name the cross-attention layers of Stable Diffusion U-net
as follows, in the order they appear in the U-net:
(64, ’down’, 0), (64, ’down’, 1),
(32, ’down’, 0), (32, ’down’, 1),

(16, ’down’, 0), (16, ’down’, 1),
(8, ’down’, 0), (16, ’up’, 0),
(16, ’up’, 1), (16, ’up’, 2),
(32, ’up’, 0), (32, ’up’, 1),
(32, ’up’, 2), (64, ’up’, 0),
(64, ’up’, 1), (64, ’up’, 2).

The first number represents the spatial resolution, ’down’
/ ’up’ represents whether the layer is on the downward
(contracting) or upward (expansive) part of the U-net,
and the third number indicates the index among the
cross-attention layers of the same resolution and direction.

In Figure 7 we use the following growing sequence of
cross-attention layer subsets:
0: Empty set
1: Layer (8, ’down’, 0) only
2: (16, ’down’, 1) - (8, ’down’, 0)
3: (16, ’down’, 1) - (16, ’up’, 0)
4: (16, ’down’, 0) - (16, ’up’, 0)
5: (16, ’down’, 0) - (16, ’up’, 1)
6: (16, ’down’, 0) - (16, ’up’, 2)
7: (64, ’down’, 0) - (64, ’up’, 2)
The ranges listed above are inclusive.

In Figures 2 and 11 in the main text we condition the lay-
ers (8, ’down’, 0), (16, ’up’, 0) on the tar-
get shape textual embeddings, and the other layers on the
target style textual embeddings. In Figure 3 in the main text
we provide the target shape textual embeddings to layers
(16, ’down’, 1) - (16, ’up’, 0).

8.2. Text Prompts

8.2.1 Cross-Attention Analysis (Fig. 5)

We used the following lists of objects and appear-
ances for generating the "appearance object" and
"object, appearance" prompts in Figure 5:

Objects (50): "dog", "cat", "tree",
"chair", "book", "phone", "car",
"bike", "lamp", "table", "flower",
"desk", "computer", "pen", "pencil",
"lamp", "television", "picture",
"mirror", "shoe", "boot", "sandals",
"house", "building", "street", "park",
"river", "ocean", "lake", "mountain",
"chair", "couch", "armchair",
"bookcase", "rug", "lampshade", "fan",
"conditioner", "heater", "door",
"window", "bed", "pillow", "blanket",
"curtains", "kitchen", "refrigerator",
"stove", "oven", "microwave"

Appearances (20): "fuzzy", "shiny",
"bright", "fluffy", "sparkly", "dull",
"smooth", "rough", "jagged", "striped",
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Figure 15. Style mixing examples. Top row: Style source subjects, First column: Geometry source subjects. The geometry subject’s
tokens are passed to the three layers in the range (16, ’down’, 1) - (16, ’up’, 0), while all the rest are conditioned on the
appearance subject’s token.
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Figure 16. Style mixing with more appearance layers. Top row: Style source subjects, First column: Geometry source subjects. Here the
geometry subject’s tokens are passed only to two layers (8, ’down’, 0) and (16, ’up’, 0). Thus this emphasizes the appearance
subject’s token more, resulting in a more dominant appearance compared to the previous setup in Figure 15.
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Backpack in a shape of <cat>

Epic CG art painting of <dog>

Extended Textuall Inversion (ours)

Textual Inversion

Extended Textuall Inversion

Textual Inversion

Real

Real

Figure 17. Samples generated with Textual Inversion (TI) and the proposed Extended Textual Inversion (XTI). XTI has better text alignment
while providing more accurate subject reconstruction.

"painting", "retro", "vintage",
"modern", "bohemian", "industrial",
"rustic", "classic", "contemporary",
"futuristic"

8.2.2 Image Attributes Analysis (Fig. 7)

For Figure 7, we used the following object, color and style
words to generate the prompts:

Objects (13): "chair", "dog", "book",
"elephant", "guitar", "pillow",
"rabbit", "umbrella", "yacht", "house",
"cube", "sphere", ’car’

Colors (11): "black", "blue", "brown",
"gray", "green", "orange", "pink",
"purple", "red", "white", "yellow"

Style descriptions (7): "watercolor", "oil
painting", "vector art", "pop art
style", "3D rendering", "impressionism
picture", "graffiti"

8.2.3 Text Similarity Metric Prompts

For Text Similarity evaluation we use the following 14
prompts:

"A photograph of <token>", "A photo
of <token> in the jungles", "A photo

of <token> on a beach", "Aquarelle
painting of <token>", "Oil painting
of <token>", "Marc Chagall painting of
<token>", "Sketch drawing of <token>",
"Night photograph of <token>",
"Professional studio photograph of
<token>", "3d rendering of <token>",
"Fantasy CG art painting of <token>",
"A statue of <token>", "A photograph of
two <token> on a table", "App icon of
<token>".

Here <token> represents the placeholder for XTI in-
version tokens to be replaced with the corresponding textual
description in Table 2.
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Original Dataset Text Description

elephant a statue of an elephant
cat statue a statue of a cat
colorful teapot a colorful teapot
clock an alarm clock
mug skulls a cup with a mummy
physics mug a black cup with math equations
red teapot a red teapot
round bird a round bird sculpture
thin bird a sculpture of a thin bird
barn an old wooden barn
cat a kitten
dog a grey dog
teddybear a teddy bear
tortoise plushy a tortoise plush
wooden pot an artistic wooden pot

Table 2. Detailed text descriptions for each dataset. The first 9 correspond to the datasets provided in [15], and the remaining 6 correspond
to the datasets provided in [26].

Figure 18. Human labeling interface. On the left we depict a sample task to evaluate subject similarity, and on the right the task to evaluate
text similarity. The comparing methods raws are always shuffled. Both methods use the same random seed.
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